Jump to content
  • HoloBIM Structural
    HoloBIM Structural


  • Ανεπιθύμητα φαινόμενα ανατινάξεων: Θόρυβος και σκόνη


    Σε συνέχεια προηγούμενου σχετικού άρθρου για τα ανεπιθύμητα φαινόμενα των ανατινάξεων”, θα αναφερθούμε στο θόρυβο & στη σκόνη.

    Σε  κάθε ανατίναξη δημιουργείται ωστικό κύμα, κυρίως από την εκτόνωση της πίεσης των αερίων που προκύπτουν από την έκρηξη των υλικών.

    Σύμφωνα με τους Wiss & Lineham (1978), η δημιουργία ωστικού κύματος οφείλεται σε:

    • διαφυγή των αερίων της έκρηξης από το στόμιο του διατρήματος (venting) & δια μέσου της μάζας του θρυμματισμένου βράχου.
    • διαφυγή αερίων από τις ασυνέχειες του πετρώματος που συναντούν τα διατρήματα.
    • μετατόπιση του θραυσμένου πετρώματος κατά την ανατίναξη, όπου λόγω του μεγάλου όγκου συμπιέζει τον αέρα.
    • πρόσκρουση μεταξύ των τεμαχίων του εξορυγμένου υλικού καθώς αυτά κινούνται αιωρούμενα.
    • ελεύθερη έκρηξη υλικών στην επιφάνεια του εδάφους, όπως πχ όταν χρησιμοποιείται ακαριαία θρυαλλίδα για την έναυση των υπονόμων.

    Το ωστικό κύμα προκαλεί τοπική μεταβολή της πίεσης στον αέρα (υπερπίεση) η οποία και μεταδίδεται ακτινικά προς κάθε δυνατή διεύθυνση με ταχύτητα περίπου 340 m/sec. Έτσι παράγεται ένας ανεπιθύμητος κι ενοχλητικός ήχος (θόρυβος).

    Επειδή η ανατίναξη διαρκεί πολύ μικρό χρονικό διάστημα (1 – 2 sec αναλόγως του πλήθους των διατρημάτων), πρακτικά θα γίνει αντιληπτή ως βροντή ή “μπουμπουνητό”, αυτό δηλαδή που συνήθως ακολουθεί μετά τις ηλεκτρικές εκκενώσεις (αστραπές & κεραυνούς) στην ατμόσφαιρα σε μια βροχερή ημέρα. 

    Είναι αρκετά σύνηθες το φαινόμενο, ο θόρυβος που προκαλεί μια έκρηξη να συγχέεται με τη δόνηση. Με δεδομένο ότι τα ηχητικά κύματα ταξιδεύουν με μικρότερη ταχύτητα από τη δόνηση, θεωρείται από τους περιοίκους ότι η έκρηξη προκαλεί “διπλή δόνηση”. Η ψευδαίσθηση αυτή γίνεται ακόμη πιο έντονη από την επίδραση που έχει το ωστικό κύμα (μεταβολή στην πίεση του αέρα) στα παράθυρα των σπιτιών (κροτάλισμα).

    Η υπερπίεση (sound pressure) ή ωστικό κύμα που δημιουργείται από την έκρηξη μιας ποσότητας εκρηκτικής ύλης, υπολογίζεται από την ακόλουθη σχέση (ISEE Blaster’s Handbook) :

    όπου :GRAPHIC-1-300x126.jpg.pagespeed.ce.FVIY0

    • P η προκαλούμενη πίεση στον ατμοσφαιρικό αέρα σε kpa (sound pressure)
    • Q η ποσότητα της εκρηκτικής ύλης σε kg ανά χρόνο επιβράδυνσης
    • R η απόσταση της θέσης μέτρησης από το σημείο της έκρηξης σε μέτρα
    • Κ & β συντελεστές με τιμές αναλόγως των συνθηκών γόμωσης
    GRAPHIC-2-1024x458.jpg

    Συνήθως, όμως, ως μονάδα μέτρησης της ηχητικής έντασης χρησιμοποιείται το decibel (dB), το οποίο προκύπτει από τη σύγκριση της υπερπίεσης με μια τιμή αναφοράς (PO = 20 x 10-9 kpa). Υπολογίζεται από τη σχέση dB = 20 x log (P/PO).

    Προφανώς η υπερπίεση (ωστικό κύμα) δεν πρέπει να ξεπερνά κάποιο όριο ώστε να μην υπάρχουν παράπονα αλλά και να μην προκαλούνται ζημιές.

    Επί σειρά ετών θεωρούνταν ως ασφαλές όριο η τιμή των 140 dB. Η Υπηρεσία Μεταλλείων των ΗΠΑ (USBM) έπειτα από σχετική μελέτη του Siskind (1980) υιοθέτησε ως ανώτατη επιτρεπόμενη τιμή τα 134 dB, που πρακτικά αποτελεί το ήμισυ της προηγούμενης (λόγω λογαριθμικής κλίμακας) & ισοδυναμεί με το θόρυβο που προκαλεί άνεμος ταχύτητας 32 km/h (έντασης περίπου 5  στην κλίμακα Beaufort).

    Η τιμή των 134 dB υιοθετήθηκε ως μέγιστη επιτρεπόμενη και από τον  Κανονισμό Μεταλλευτικών & Λατομικών Εργασιών (ΚΜΛΕ – Yπ. Aποφ. 2223 ΦEK 1227/14-06-2011) που εφαρμόζεται στη χώρα μας (άρθρο 88).

    Εκτός από την ποσότητα των εκρηκτικών ανά χρόνο επιβράδυνσης, το ωστικό κύμα επηρεάζεται και από ατμοσφαιρικούς παράγοντες, όπως η διεύθυνση & η ταχύτητα του πνέοντος ανέμου, καθώς και τη θερμοκρασιακή αναστροφή (atmospheric inversion).

    Σε κανονικές συνθήκες η θερμοκρασία του αέρα μειώνεται κατά περίπου 2 οC ανά 300 m ύψους. Το ίδιο συμβαίνει και με την ταχύτητα που μεταβάλλεται κατά περίπου 0,5 m/sec για κάθε αλλαγή της θερμοκρασίας κατά 1 οC. Η κανονική αυτή συνθήκη στρέφει τα ηχητικά κύματα προς τα πάνω μακριά από το έδαφος, με αποτέλεσμα να απορροφούνται από την ατμόσφαιρα.

    Στην περίπτωση θερμοκρασιακής αναστροφής (σπάνιο φαινόμενο) η θερμοκρασία του αέρα αυξάνεται με το ύψος με αποτέλεσμα τα ηχητικά κύματα να επιστρέφουν προς το έδαφος. Έτσι αντί να έχουμε απόσβεση του θορύβου, παρατηρείται τοπικά ενίσχυση της έντασης του.  

    GRAPHIC-3-1024x350.jpg

    Ο άνεμος μπορεί να επιδράσει επίσης με την ταχύτητα & τη διεύθυνση διάδοσης του. Όταν πνέει άνεμος προφανώς και θα γίνει εντονότερα αισθητός ο ήχος της έκρηξης προς την κατεύθυνση που φυσάει. Με την ένταση του δε θα συμβάλει και στην ενίσχυση της στάθμης του θορύβου στη συγκεκριμένη περιοχή.

    Η ύπαρξη φυσικού αναχώματος ή άλλης μορφής προστατευτικού φραγμού μεταξύ της θέσης  ανατίναξης και του σημείου ενδιαφέροντος, μειώνει την επίδραση αυτή.

     

    GRAPHIC-4-1024x265.jpg

    Ταυτόχρονα με τη πρόκληση θορύβου το ωστικό κύμα της ανατίναξης παρασύρει και τα μικροσκοπικά σωματίδια από το θρυμματισμένο πέτρωμα (σκόνη). Προφανώς όσο ισχυρότερο το ωστικό κύμα & η ένταση του πνέοντος ανέμου, τόσο μεγαλύτερη η διασπορά της σκόνης.

    Το φαινόμενο αντιμετωπίζεται σχετικά εύκολα με διαβροχή των μετώπων εξόρυξης από ασφαλή απόσταση & πάντοτε πίσω από αυτά, για προστασία από τις εκτινάξεις θραυσμάτων πετρώματος. Εάν δε υπάρχει και δυνατότητα τηλεχειρισμού του “καταβρεχτήρα” ακόμα καλύτερα !

    GRAPHIC-5-1024x370.jpg

    Οι παρεμβάσεις που μπορούν να γίνουν ώστε να μειωθεί η ένταση του ωστικού κύματος & δευτερευόντως η διασπορά σκόνης, είναι :

    • (a) μείωση της ποσότητας εκρηκτικών Q ανά χρόνο επιβράδυνσης.
    • (b) προσεκτική & επιμελημένη επιγόμωση (τάπα) σε μήκος τουλάχιστον 25 x d, όπου d η διάμετρος σε mm.
    • (c) αποφυγή προσανατολισμού της διεύθυνσης έναυσης των υπονόμων προς εκείνη που θα προκληθεί όχληση (πχ προς κοντινές κατοικίες)
    • (d) επιλογή κατάλληλων χρόνων επιβράδυνσης ώστε η βαθμιαία προχώρηση της ανατίναξης να γίνεται με ταχύτητα μικρότερη από αυτή της διάδοσης του ήχου στον αέρα.
    • (e) αποφυγή χρήσης στην επιφάνεια του εδάφους μέσων έναυσης που προκαλούν ισχυρή έκρηξη, δηλαδή πρακτικά της ακαριαίας θρυαλλίδας.

    Εάν τούτο δεν είναι εφικτό, θα πρέπει η θρυαλλίδα να καλύπτεται από στρώμα λεπτόκοκκης άμμου πάχους περίπου 10 cm. Έτσι θα περιοριστεί σημαντικά ο παραγόμενος θόρυβος, θα αυξηθεί όμως η ποσότητα της σκόνης.  

    Η ενδεδειγμένη λύση στο πρόβλημα είναι η χρήση “μη ηλεκτρικών καψυλλίων” (Nonel) ή/και ηλεκτρονικών καψυλλίων (electronic detonators) για την έναυση των εκρηκτικών.

    Tόσο με τα “Nonel” όσο και με τα ηλεκτρονικά καψύλλια , η έκρηξη ξεκινάει από τον πυθμένα κάθε γομωμένου υπονόμου. Έτσι τα αέρια της έκρηξης παραμένουν εντός της θρυμματισμένης μάζας του πετρώματος για μεγαλύτερο χρονικό διάστημα πριν διαχυθούν στην ατμόσφαιρα, συμβάλλοντας με την πίεση τους στη μετακίνηση του θρυμματισμένου βράχου από τη φυσική του θέση.

    GRAPHIC-6-1024x377.jpg

    Έτσι επιτυγχάνεται καλύτερος θρυμματισμός, ενώ και ο παραγόμενος θόρυβος είναι περιορισμένος, αφού τα αέρια της έκρηξης διαχέονται στην ατμόσφαιρα με τη μικρότερη δυνατή πίεση. Το τελευταίο συνεισφέρει θετικά και στην αποτροπή διασποράς σκόνης. 

    Επιπρόσθετα λόγω των πολλαπλών χρόνων επιβράδυνσης, έχουμε τη δυνατότητα καλύτερου ελέγχου της ανατίναξης κι άρα ευκολότερη εφαρμογή του (d). Με κατάλληλο σχεδιασμό, προσεκτική & επιμελημένη εργασία, αλλά και εφαρμογή όλων των κανονισμών όλα γίνονται. 

    Λεωνίδας Καζάκος, Μηχανικός Μεταλλείων ΕΜΠ MSc Τεχνικός σύμβουλος σε θέματα εφαρμογής εκρηκτικών υλών Εκπόνηση μελετών ελεγχόμενων ανατινάξεων – μετρήσεις δονήσεων – επίβλεψη εργασιών

    πηγή: Εργοληπτικόν Βήμα Νο_138 της ΠΕΣΕΔΕ


    Πηγή: https://gobhma.gr/anepithymita-fainomena-anatinaxeon-thoryvos-skoni/




    User Feedback

    Recommended Comments

    There are no comments to display.



    Create an account or sign in to comment

    You need to be a member in order to leave a comment

    Create an account

    Sign up for a new account in our community. It's easy!

    Register a new account

    Sign in

    Already have an account? Sign in here.

    Sign In Now

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.